

Salesforce B2C Commerce Implementation Playbook:
Buy Online

Pick up In Store
(BOPIS)

Last updated: April 2020

© Copyright 2000–2020 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

About this Playbook 3

Benefits of offering BOPIS 3

Use Case Overview 4
High Level Sample BOPIS Workflow 4

Implementation Prerequisites 5
Required Products 5
Required Systems or Services 5
Data Requirements 6
Expertise Needed 6

Example Data Flow 6

Implementation Steps 7
Install Plugin & Supporting Metadata 7
Data Setup & Considerations 8
Resolving Template Conflicts 8
Storefront Template Customizations 9
Test your solution! 24

Optional Additional Enhancements 24

Store Pick-up Considerations 26

Additional Resources 27

 2

About this Playbook

The purpose of this document is to help merchants and developers in customizing their existing
Salesforce B2C Commerce storefront, to enable functionality that gives a shopper the option to buy a
product online, and pick it up at a local store.

This playbook uses standard Commerce Cloud functionality, as well as suggestions for how to make
customizations to meet each merchant’s specific business needs and to follow industry best practices.
Depending on how your storefront has been implemented, there may be more or less customization
required to enable this functionality.

And while this Playbook will provide some guidance on functionality that will be required on downstream
platforms and systems, it’s primary focus is on the aspects related to storefront customizations on
Commerce Cloud.

Before you begin any project that involves customizing your storefront, make sure you align with your
business and technical teams, and any other teams that may be impacted. If you have a Certified Partner
you’re already engaged with, involve them in your plans.

Salesforce experts are here to help! If you need support implementing this functionality, our Commerce
Cloud Professional Services teams can help get you up and running. From Certified Technical Architect
guidance with your internal or Partner development teams, or hands-on Certified Commerce Cloud
Developers to implement the solution for you. Reach out to your Commerce Cloud Customer Success
Manager to start a conversation.

Benefits of offering BOPIS

Enhancing your storefront to offer BOPIS has many benefits for your shoppers and you as a merchant.

Many shoppers like the convenience of BOPIS in order to:

● avoid paying shipping costs
● get merchandise faster; enjoy instant gratification
● take advantage of special discounts or promotional offers

And merchants will like the impact on their bottom line:

● The greater majority of shoppers who go into a store to pick up an online order, end up making
additional purchases.

● The more orders that customers pick up themselves at a store, the more money that is saved in
shipping carrier costs, and other fulfillment logistics expenses.

 3

Use Case Overview

BOPIS, BOPUS, In-Store Pick Up, Click and Collect, Curbside Pick up! Are these the same things?
Different? And what do I need to do to offer this to my shoppers?

No matter what you call it, the ability for a shopper to purchase a product on a brand’s ecommerce
storefront, and be able to pick it up at a local brick and mortar store has become table stakes functionality
for many retailers. And whether you have a dozen stores in one state or hundreds spread out across
countries, there are some aspects that are a part of any complete BOPIS solution.

Let’s look at a high level BOPIS journey, identifying 5 key actions.

High Level Sample BOPIS Workflow

Note: This is a high-level view of what a typical process could look like. The solution you plan may
involve more or less steps, or involve other systems than are represented here.

1. First, the shopper places the order on your Commerce Cloud storefront indicating that they would

like to pick up the item from a store that has available inventory, and the order is exported down
to an Order Management System (OMS).

a. Don’t have an OMS? You may have an ERP, DOM, or some other internal system that
processes and routes your orders. For the purposes of this flow, let’s just call that your
OMS.

i. Click here to learn about our Salesforce Order Management solution, which
integrates directly into B2C Commerce and natively with Service Cloud.

2. Next, the OMS identifies orders that are to be fulfilled from a physical store, and routes those
orders to the appropriate store.

 4

https://www.salesforce.com/products/commerce-cloud/ecommerce/order-management/?d=7010M0000025eFf&DCMP=KNC-Google&ef_id=EAIaIQobChMI8_rlipSC6QIVRtbACh0Zcg3MEAAYASAAEgIZ-PD_BwE:G:s&s_kwcid=AL!4604!3!359675225013!e!!g!!salesforce%20order%20management&pcrid=359675225013&pdv=c

3. At the store, whether via an in-store app, access to an OMS console, or some other process, the
store associate will review the order, pick and pack the products on the order, and trigger an
action to send an email or other notification to the customer that their order is ready for pick up.

4. When the customer arrives at the store, they may go inside to a specific location in the store, ask
a sales associate, or even just pull up in their car “curbside” for an associate to give them their
order “contactless”.

5. Lastly, with the customer having received their order, the order cycle is complete, and the order is
marked as picked up, thereby completing the flow.

Implementation Prerequisites
For this guide, we’ll be looking at the implementation aspects for Commerce Cloud, focused on the
storefront part of the BOPIS workflow, and what is required for this functionality. Depending on your
system architecture and how you’ve already implemented your site, your BOPIS implementation may
include additional requirements.

First, here are some questions you’ll need to answer to plan your approach:

● Stores
○ What stores do you want to offer BOPIS at? One to start? Only some stores? All stores?
○ Can each store support the space and logistics of holding packages for customer

pick-up?
○ Need to offer Curbside pick-up? What will your process be for handling this?
○ What additional training will your Store Associates, Call Center Agents, and Merchants

need?
● Products

○ What system holds your product data for store items that are not currently part of your
online catalog?

○ Do you have a way to identify which store products you will offer for BOPIS?
● Inventory

○ What system holds your store inventory and how will you access it?
○ What type of “threshold” or “safety stock” will you need to account for and how and where

will you maintain this?

Now, let’s take a look at the prerequisites for the Commerce Cloud storefront functionality.

Required Products
● Salesforce B2C Commerce (Storefront Reference Architecture “SFRA” or SiteGenesis)
● “plugin_instorepickup” cartridge installed (if using SFRA)

Required Systems or Services
● An Order Management System, ERP, or another system that handles order management

 5

● An inventory management system/service, or the ability to send store inventory data via XML file
to Salesforce Commerce Cloud at regular, frequent intervals, or via real-time API.

● Salesforce Marketing Cloud, another email service provider, or system that you currently use to
send transactional emails to your customers.

Data Requirements
● Product Catalog (for any products you did not already offer online, and BOPIS custom attribute)
● Store Information Details (such as address, phone number, hours)
● Store Geolocation Data (to power the store locator if using Commerce Cloud Geolocation API)
● Store Inventory Data (sku-level inventory by store)

Expertise Needed
● Salesforce Commerce Cloud Certified Architect
● Salesforce Commerce Cloud Certified Developer(s) (front-end and back-end)

Example Data Flow

Note: This diagram represents one example of the systems that could be involved, and the types of
data flows you could have to support BOPIS. Your solution may involve different systems or data flows.

 6

Implementation Steps

We’ve documented here the main steps for implementing BOPIS, using Commerce Cloud OOTB
functionality and storefront customizations. There are links out to other supporting documentation on the
Commerce Cloud Documentation Portal and the Commerce Cloud GitHub repository. The steps
here are for storefronts built with SFRA. For SiteGenesis, please refer to the documentation on the
infocenter for SiteGenesis in-Store Pickup, as there are some minor variations.

1. Install Plugin & Supporting Metadata

Follow instructions in Getting Started section here:
https://github.com/SalesforceCommerceCloud/plugin_instorepickup#getting-started

Ensure your instance has access to the proper system object extensions metadata to support the plugin:
https://github.com/SalesforceCommerceCloud/storefrontdata/blob/master/demo_data_sfra/meta/system-o
bjecttype-extensions.xml

This includes the following object custom attributes:

● Product: availableForInStorePickup (boolean)
This attribute, when set to true, is used to enable the functionality to find a product in a store via
the PDP. It is also then used to determine when an InventoryList (or external inventory ID when
using an API) for a given store needs to be associated with a ProductLineItem when it is added to
the Basket.

● ShippingMethod: storePickupEnabled (boolean)
Determines if the shipping method appears as an in-store shipping method.

● Store: inventoryListId (string)
This attribute is used to store an ID reference to a given store’s associated inventory list (or
external inventory ID when using an API). This will be the inventory list used to determine product
availability. Upon add to cart, it will also be associated with the ProductLineItem via the
productInventoryListID attribute.

● ProductLineItem: fromStoreId (string)
This attribute is used to store an ID reference to a given Store object on a line item level.

● Shipment: fromStoreId (string)
This attribute is used to store an ID reference to a given Store object on a shipment level.

● Shipment: shipmentType (string)
For shipments where this attribute is set to ‘instore’, only shipping methods where

 7

https://documentation.b2c.commercecloud.salesforce.com/DOC1/index.jsp?topic=%2Fcom.demandware.dochelp%2FSiteDevelopment%2FImplementingInStorePickup.html
https://github.com/SalesforceCommerceCloud/plugin_instorepickup#getting-started
https://github.com/SalesforceCommerceCloud/storefrontdata/blob/master/demo_data_sfra/meta/system-objecttype-extensions.xml
https://github.com/SalesforceCommerceCloud/storefrontdata/blob/master/demo_data_sfra/meta/system-objecttype-extensions.xml

storePickupEnabled = true will be available.

2. Data Setup & Considerations

Products:
You will want to update your existing product feed to account for the availableForInStorePickup custom
attribute.

Inventory:
There are different ways you can choose to retrieve store inventory data to power BOPIS functionality on
your storefront.

● Extract inventory data from your source system and send it to Commerce Cloud as XML
formatted Inventory Lists, updating at regular intervals

○ For the XML file format, refer to the inventory.xsd schema. (schema).

● Use APIs to call your source system when you need to retrieve store inventory

Either approach will work, although the approach you take will determine certain aspects of the
implementation. If using an API-based approach, wherever Commerce Cloud would look for a store
inventory list, you will now need to use an API to call the appropriate store’s inventory details. Keep that in
mind as you plan your solution.

Stores:
You can add your store data manually in Business Manager, or import store information in an XML file.

● If importing via an xml file, follow the stores.xsd schema.

Geolocation:
If using Commerce Cloud API for Geolocation data, import all Store Geolocation data, following the
geolocation.xsd schema

You may need to leverage the following job steps as needed to perform automated maintenance of your
data:

● ImportInventoryLists
● ImportStores (if importing stores via XML)
● ImportCatalog (to import updates to availableForInStorePickup attribute on products)

3. Resolving Template Conflicts

You may be using multiple plugins, and therefore you may have multiple template conflicts to resolve.
Salesforce provides another cartridge, plugin_cartridge_merge which provides a reference for how to

 8

https://documentation.b2c.commercecloud.salesforce.com/DOC1/index.jsp?topic=%2Fcom.demandware.dochelp%2FInventory%2FinventoryxsdSchema.html
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/DWAPI/xsd/inventory.xsd
https://documentation.b2c.commercecloud.salesforce.com/DOC1/index.jsp?topic=%2Fcom.demandware.dochelp%2FPromotions%2FCreatingStores.html
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/DWAPI/xsd/store.xsd
https://documentation.b2c.commercecloud.salesforce.com/DOC1/index.jsp?topic=%2Fcom.demandware.dochelp%2FPromotions%2FStoregeolocationdata.html
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/DWAPI/xsd/geolocation.xsd
https://documentation.b2c.commercecloud.salesforce.com/DOC1/index.jsp?topic=%2Fcom.demandware.dochelp%2FDWAPI%2Fjobstepapi%2Fhtml%2Fapi%2Fjobstep.ImportInventoryLists.html
https://documentation.b2c.commercecloud.salesforce.com/DOC1/index.jsp?topic=%2Fcom.demandware.dochelp%2FDWAPI%2Fjobstepapi%2Fhtml%2Fapi%2Fjobstep.ImportStores.html
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/DWAPI/jobstepapi/html/api/jobstep.ImportCatalog.html
https://github.com/SalesforceCommerceCloud/plugin_cartridge_merge

merge together multiple plugins in a single customization cartridge. You can refer to this cartridge for
inspiration when considering the best way to implement plugins in your existing code base.

● Review the following list of templates which override the base SFRA cartridge:
https://github.com/SalesforceCommerceCloud/plugin_instorepickup#template-conflicts

● Compare template code between app_storefront_base (main SFRA cartridge) and
plugin_instorepickup (main BOPIS plugin cartridge). This involves using a comparison tool to
compare the files for differences, or run a “diff” of the files as shown in the following example:

Example of code comparison for productAvailability.isml.

During comparison, changes are highlighted to show where the differences are. In the above
example, app_storefront_base code is on the left and the plugin_instorepickup code is on the
right. New code is added to lines 6-12 by the version of the ISML template used by the plugin.

● Copy the identified delta code added from the plugin_instorepickup cartridge to any
customizations cartridge code which may override it. If the templates being overridden by the
plugin_instorepickup cartridge don’t exist in any cartridges other than app_storefront_base, you
should not need to copy those changes to any other cartridges and instead use the
plugin_instorepickup cartridge’s version of those templates.

For example, if productAvailability.isml is in your custom cartridge, since custom cartridges
override base and plugin cartridges alike, the code delta mentioned above from lines 6-12 would
need to be added to your custom cartridge override. (see SFRA Overview to see the expected
cartridge stack)

● Test the storefront functionality and review all logs for errors to ensure all of the plugin features
work correctly.

4. Storefront Template Customizations

The Storefront Reference Architecture (SFRA), with the in-store pick up cartridge installed, provides key
out of the box (OOTB) functionality and template code, to support BOPIS. The below screenshots and

 9

https://github.com/SalesforceCommerceCloud/plugin_instorepickup#template-conflicts
https://documentation.b2c.commercecloud.salesforce.com/DOC1/index.jsp?topic=%2Fcom.demandware.dochelp%2FSFRA%2FSFRAOverview.html

functional details are from the SFRA Wireframes Documentation. If you are using Site Genesis as your
reference application, you can see the OOTB design and functionality for BOPIS in the Site Genesis
Wireframes and Functional Spec Documentation.

For enabling the OOTB BOPIS functionality, here are the key areas that you will need to update,
depending on your current template design.

● Product Detail Page
● Cart
● Checkout
● Order Confirmation / Order History & Details

We’ve also included some additional sections you may choose to customize, to further enhance the
customer experience, or provide additional custom functionality. These sections include:

● Header
● Product Listing / Search Results Page

To identify the areas that you will need to customize, based on your specific storefront implementation,
you can compare your current pages with the OOTB template designs for areas that include elements to
support BOPIS. While this guide covers the minimum OOTB features to support BOPIS, you may choose
to make additional changes in support of your business requirements or brand style guide. Work with your
technical teams and design teams, to help identify areas where your storefront templates may need more
or fewer adjustments to support the functionality and adhere to your brand’s look and feel.

Note: Don’t forget about the importance of clear and prominent messaging throughout your site
experience about the store pick-up process and FAQs!

 10

https://xchange.demandware.com/docs/DOC-41877
https://xchange.demandware.com/community/roadmap-and-releases/documentation
https://xchange.demandware.com/community/roadmap-and-releases/documentation

Product Detail Page (no saved store) - OOTB Example Design:

Product Detail Page (no saved store) - OOTB Functional Details:

The Product Detail page for a product with in-store pickup has the same functionality as the Product
Detail page for a standard product or a variation product, with the following exceptions

Mobile:

1. Clicking Store Pickup: Select Store opens the Store Selector pane.

Desktop:

2. Clicking Store Pickup: Select Store opens the Store Selector page in a modal window.

 11

Store Selector (no saved store) - OOTB Example Design:

Store Selector (no saved store) - OOTB Functional Details:

Mobile:

1. The shopper can enter a zip code or a postal code. Clicking Find Stores searches the

geographical area specified.
a. Shows an error message if an incorrect postal code or zip code is entered, or if there are

no matching stores for the entered code.
b. The system returns all valid store locations in list view based on the zip code / postal

code and radius. The following store attributes are shown:
i. Store Name
ii. Address - Clicking opens Google Maps in a browser window with the store

location pinned on the map. Store attributes for latitude and longitude must be
configured in Business Manager.

 12

iii. Store Hours
iv. Phone Number - Clicking opens a prompt to dial the store's number.

2. Radius dropdown values are stored in the plugin code (15-300 miles), the default is 15 miles.

Selecting a radius value refines the search results.
a. Miles can be converted to kilometers via the script method

‘dw.catalog.StoreMgr.searchStoresBy.'

3. Clicking Select Store sets the store as the preferred store for the remainder of the session. The
Store Selector panel closes, and the shopper is returned to the prior page showing the store
information.

4. Clicking Close (X) closes the panel and returns the shopper to the Product Detail page, which
shows no store information.

Desktop:

5. Clicking Find Stores opens the Store Selector in a modal window (with or without results).

Store Selector (with saved store) - OOTB Example Design:

Store Selector (no saved store) - OOTB Functional Details:

The Product Detail page for a product with in-store pickup has the same functionality as the Product
Detail page for a standard product or a variation product, with the following exceptions

 13

Mobile:

1. Shows the following store attributes:
a. Store Name
b. Store Address - Clicking opens Google Maps in a browser window with the store location

pinned on the map. Store attributes for latitude and longitude must be configured in
Business Manager.

c. Store Hours
d. Phone Number - Clicking opens a prompt to dial the store's number.

2. Clicking Change Store opens the Store Selector panel.

3. Clicking X removes the saved store. The Change Store button is replaced with Store Pick-up:

Select Store.
a. Clicking Store Pickup: Select Stores opens the Store Selector panel.

Desktop:

4. Clicking Store Pickup: Select Store opens the Store Selector page in a modal window.

Shopping Cart / Basket - OOTB Example Design:

 14

Shopping Cart / Basket - OOTB Functional Details:

The cart page for a product with in-store pickup has the same functionality as the cart page for a standard
product or a variation product with the following exceptions.

Mobile / Desktop

1. If the shopper has a store saved in their session, shows the text ‘Picking up From’ and the
following store attributes:

a. Store Name
b. Store Address - Clicking opens Google Maps in a browser window with the store location

pinned on the map. Store attributes for latitude and longitude must be configured in
Business Manager.

c. Phone Number - Clicking opens the phones prompt to dial the store's number.

2. If the shopper does not have a store saved in their session, they can select Store Pickup in the
Shipping Method dropdown.

a. For guest shoppers, clicking Checkout opens the Checkout Login page.
b. For registered shoppers, clicking Checkout opens the Shipping Address | Shipping

Method page with the Store Selector panel blank.

 15

Shipping Address | Shipping Method (No Saved Store) - OOTB Example Design:

Shipping Address | Shipping Method (No Saved Store) - OOTB Functional Details:

The shopper is presented this page if they do not have a saved store in their session. The shopper can
select Store Pickup from the Shipping Method panel.

 16

Mobile | Desktop:

1. The shopper can enter a zip code or a postal code.
a. Shows an error if an incorrect postal code or zip code is entered, or if there are no

matching stores.
b. Shows all valid store locations in list view based on the zip code / postal code and radius.

The following store attributes are shown:
i. Store Name
ii. Store Address - Clicking opens Google Maps in a browser window with the store

location pinned on the map. Store attributes for latitude and longitude must be
configured in Business Manager.

iii. Store Hours
iv. Phone Number - Clicking opens a prompt to dial the store's number.

2. Clicking Find Stores searches the geographical area specified.

3. Radius dropdown values are stored in a .properties file (15-300 miles), the default is 15 miles.

Selecting a radius value refines the search results. Miles can be converted to kilometers via the
script method ‘dw.catalog.StoreMgr.searchStoresBy.'

4. The Select Store button is inactive until at least 1 store is returned in the result set.
a. Clicking Select Store sets the store as the preferred store for the remainder of the

session.

5. This button is active even if all required fields are not filled in. Clicking Next: Payment opens the
Billing & Payment Method page.

a. An error message is shown if the shopper clicks Next: Payment without first selecting a
store by clicking Select Store.

 17

Shipping Address - Shipping Method (Saved Store) - OOTB Sample Design:

Shipping Address - Shipping Method (Saved Store) - OOTB Functional Details:

The shopper is presented this page if they have a saved store in their session.

Mobile | Desktop:

1. The selected store is shown under Shipping Method: Store Pickup. The following store attributes
are shown:

a. Store Name
b. Store Address - Clicking opens Google Maps in a browser window with the store location

pinned on the map. Store attributes for latitude and longitude must be configured in
Business Manager.

c. Store Hours
d. Phone Number - Clicking opens a prompt to dial the store's number.

2. Clicking Change Store removes the saved store details. The Store Locator panel opens and

shows the previous search.

 18

Billing Address - Payment Method - OOTB Sample Design:

Billing Address - Payment Method - OOTB Functional Details:

The Billing Address | Payment Method page for a product with in-store pickup has the same functionality
as the Billing Address | Payment Method for a standard product or a variation product with the following
exceptions.

Mobile | Desktop:

1. Shows store attributes:
a. Store Name
b. Store Address
c. Phone Number

 19

2. Clicking Edit opens the Store Locator page, enabling the shopper to perform a new store search.

Place Order - OOTB Sample Design:

Place Order - OOTB Functional Details:

The Place Order page for a product with in-store pickup has the same functionality as the Place Order
page for a standard product or a variation product with the following exceptions.

Mobile | Desktop:

1. Shows store attributes:
a. Store Name
b. Store Address
c. Phone Number

 20

2. Clicking Edit opens the Store Locator page, enabling the shopper to perform a new store search.

Order Receipt - OOTB Sample Design:

Order Receipt - OOTB Functional Details:

The Order Receipt page for a product with in-store pickup has the same functionality as the Order Receipt
page for a standard product or a variation product with the following exceptions.

Mobile | Desktop:

1. Shows store attributes:
a. Store Name
b. Store Address - Clicking opens Google Maps in a browser window with the store location

pinned on the map. Store attributes for latitude and longitude must be configured in
Business Manager.

c. Phone Number - Clicking opens a prompt to dial the store's number.

2. Shipping Method is shown as Store Pickup with a $0.00 shipping charge.

 21

Order History - OOTB Sample Design:

Order History - OOTB Functional Details:

The Order History page for a product with in-store pickup has the same functionality as the Order History
page for a standard product or a variation product with the following exceptions.

Mobile | Desktop:

1. Shows a compact view of the store details ‘Picking up from: [store name].’

 22

Order Detail - OOTB Sample Design:

Order Detail - OOTB Functional Details:

The Order Detail page for a product with in-store pickup has the same functionality as the Order Detail
page for a standard product or a variation product with the following exceptions.

Mobile | Desktop:

1. Shows store attributes:
a. Store Name
b. Store Address.
c. Phone Number

2. Shipping Method is shown as Store Pickup with a $0.00 shipping charge.

 23

5. Test your solution!

As with any enhancements you make to your storefront, follow your organization’s process for testing
thoroughly to ensure your data is accurate, data flows across all systems are operating as expected,
impacted teams know of any changes to their process, and all storefront functionality works as expected,
before launching your new BOPIS offering.

Optional Additional Enhancements

There are a few other enhancements you may wish to make to your storefront on top of what is included
with OOTB functionality, to enhance the BOPIS shopper experience. And while these are not required for
BOPIS functionality, we’ve provided some information here on the most common enhancements we’ve
seen merchants use.

1. Surface the Store Locator in your Header
a. This placement draws attention to the Store Locator, and allows the shopper to search for

and select a store before they browse to a PDP.
b. Clicking on the Store Locator link could open a modal window, or direct to the Store

Locator page.
i. Technical Tip: The selected store ID can be stored in a cookie and the selected

store details can be loaded into the header via an AJAX request and data
injection.

c. Below is a simple example of what this could look like, before and after a store is
selected.

With store selected:

2. Add a filter on your Product Listing Page for Products identified as Available for Store Pickup
a. Add this filter to be shown along with other PLP refinements that are managed in

Business Manager.

 24

b. On the product tiles, use the custom attribute to trigger the addition of a callout message
to signify a product is one that could be available for BOPIS, such as “Free In-Store
Pickup”

i. Technical Tip: This customization uses the availableForInStorePickup
attribute on products to determine whether a flag or callout message appears on
a product tile to denote that an item is sold in stores. This is not a check for store
inventory availability however, as that check will happen only on the PDP, once a
SKU has been selected.

3. Add a form field entry in Checkout for the shopper to specify an additional person to pick up the

order.
a. Technical Tip: This would require an update to your Order Export file, to add the

additional data attributes.

 25

Store Pick-up Considerations
The process for how you route orders to your stores will depend on your specific systems and
implementation.

● You may have an in-store app that Store Associates can use to receive orders and mark them as
ready for pick-up.

● You may have a way to access your OMS or ERP system in the store, to view and update orders
● Or you may have a more basic process for getting the order information to your stores for

Associates to pick and pack.

Regardless of your method, you’ll want to develop a clear process for your Store Associates for handling
order pick up, and how to deal with customer order inquiries, returns, etc. You’ll also need a way to let
customers know that the orders are Ready for Pick up, and, once picked up, to close the loop on the
order process and mark the orders as fulfilled.

Offering Curbside Pick up? Here are some additional considerations to maintain customer satisfaction
and safety for everyone:

● Have clear signage for where customers should wait
● Provide a store phone number they can call or text when they arrive
● To offer “contactless” delivery, have associates put packages in their trunk, or have a location

outside the store where associates can place packages for pick up.
● Have dedicated staff to communicate with customers and to take the packages to their car.

 26

Additional Resources
Ask the Community
Get answers to your questions from B2C Commerce experts and other customers via the B2C Commerce
Trailblazer Community Group

Review additional Documentation
Search and find specifications and technical info for all aspects of B2C Commerce on the Salesforce B2C
Commerce Infocenter.

1-on-1 Help
Request a Commerce Cloud Accelerator

Upcoming Events & Webinars
Review the Calendar of upcoming Commerce Cloud learning opportunities

Engage a Certified Commerce Cloud Architect
Need some expert guidance for planning your BOPIS solution? Reach out to your Customer Success
Manager to ask about Advisory Services.

 27

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000DGi3
https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000DGi3
https://documentation.b2c.commercecloud.salesforce.com/DOC1/index.jsp
https://documentation.b2c.commercecloud.salesforce.com/DOC1/index.jsp
https://www.salesforce.com/content/dam/web/en_us/www/documents/accelerators/accelerator-library.pdf
https://pages.mail.salesforce.com/cloud-services/event-calendar/#&product=.CommerceCloud

